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It is exciting if a single electron can be enclosed in a container
(as if a guest in a host molecule)1 and be manipulated by a
tweezer-like tool. With hope to find such a fascinating structure,
we have undertaken state-of-the-art ab initio calculations of a
partially hydrated electron system which has been speculated
as an internally localized excess-electron state.2 We indeed find
that an electron can be trapped/held in a bowl/tweezer-like
cluster comprised of six water molecules and that the gates/
arms formed by two water molecules can control the electron
transfer process. It is of interest to note that some spectra of
the species have already been observed in brilliant experiments
(the first mass spectra by Haberland group,2,3 the first photo-
electron spectra by Bowen group,2,4 the first Rydberg electron
transfer study by Schermann group,4,5 the first vibrational
autodetachment spectra by Johnson group,6,7 etc.), while its
novel structure and fascinating characteristics are unknown.
These exciting features together with the existing studies of
electron bound to molecular clusters1-10 could be of immense
interest and profound value in studies ranging from electron
release and trapping to transport phenomena.
To investigate an internally localized excess-electron state,

we have studied a partially hydrated electron system: e+(H2O)6.
An exhaustive search for all of the low-lying energy structures
has been done in a systematic and logical approach.11 Finally,
we obtained eight representative low-lying energy conformers

(Figure 1): three surface states (A, D, E′), one internal state
(Ti), one dipole-bound surface state (Pd), three hybrid (i.e.,
partially internal and partially surface) states (Y411, Y51,
Y42).12 The Möller-Plesset second-order perturbation (MP2)
theory using the 6-311++G** basis set was performed with
full geometry optimization.13 Vibrational frequencies and zero-
point energies (ZPEs) were obtained with density functional
calculations employing Becke-Lee-Yang-Parr (BLYP) type
nonlocal density functional14 and using the 6-311++G** basis
set. The most stable structure is then Y42, followed by Y51
and Y411 (Table 1). This was further verified by MP2
calculations with 6-311++G(2df,2p)+diffuse(spd/p) at the
MP2/6-311++G**-optimized geometries.15 Therefore, the
hybrid-state structures with highly clustered dangling hydrogen
atoms (Hds) and large dipole moments tend to be very stable
due to the combined e‚‚‚Hd and e‚‚‚dipole interactions. Thus,
these combined interactions would help guide electron pathways.
Our predicted lowest-lying energy structures corresponding

to two strong experimental VDE peaks7,16 of 0.47 eV and 0.18
eV are Y42 (0.46 eV) and Y51 (0.16 eV). Y411 and Pd have
VDEs of 0.28 and 0.06 eV, which correspond to both ends of
the broad band7 (0.07-0.30 eV) with a peak of 0.18 eV. Since
the intensity is stronger with increasing structural stability, our
predicted structures explain well the experimental relative
spectral intensities.2,7 We also investigated strong O-H stretch-
ing vibrational frequencies. Among the conformers studied
above, the minimum-energy structure Y42 (in which the red-
shifts of the O-Hd frequencies are 370 and 271 cm-1 by MP2/
6-31++G* and 398-382 and 358 cm-1 by BLYP/6-
311++G**) 17 conforms to two strong peaks of Bailey et al.’s
vibrational autodetachment spectra7 (3268 and 3378 cm-1 which
are red-shifted by∼450 and∼340 cm-1 relative to the free
O-H stretching frequencies). The O-H stretching frequencies
involved in e‚‚‚Hd interactions are red-shifted by 100-500 cm-1,
which is similar to the values involved in hydrogen bonding
(which is much weaker than covalent bonding). This indicates
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Figure 1. Possible low-lying energy conformers.
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that the excess electron would exist, to a certain extent, nearly
freely in the bowl/tweezer of Y42 having little interaction with
the bowl/tweezer chemically.
The lowest-energy structure Y42 can trap a single electron

in its bowl, as seen from its HOMO in Figure 2. When the
excess electron is detached from Y42 in an instant, it is
structurally transformed to a local minimum energy structure
of the neutral state Go via an intermediate neutral state Y42o*
(Figure 2), where subscript “o” denotes a neutral state. At the
MP2/6-311++G(2df,2p)+diffuse(2s2pd/p) level,15 the anionic
structure Y42 is 0.6 kcal/mol lower in ZPE-corrected energy
(∆E0) than the neutral structure Go. On opening the gate of
the bowl/tweezer structure (Y42), the excess electron is released
through the vacant space between dangling Hds. As a result,
the bowl/tweezer-like Y42 is transformed into a wide-open gate
structure (Go).18-21 As seen from the excess electron density
distribution changes, electron transfer process through the
passage surrounded by four Hds of the two water molecules
above the four-membered ring demonstrates that a novel
through-space (as opposed to the through-bond one) would be
possible in biomolecular systems (e.g., an azuline dimer22 having
Cu(I) and Cu(II) redox centers bridged by two water molecules).
This concept could be utilized to transport electrons in con-
densed matter and biomolecular systems via Hd-surrounded
pathways by controlling orientations of Hds.

In summary, the lowest energy structure Y42 is the first
molecular cluster bowl/tweezer to hold a single electron, the
release, capture, and transport of which might be controlled by
the gate/arm mechanism. The present concept to control a single
electron in a molecular system should provide a new insight
into the design of novel hosts capable of capturing/releasing
and transporting guests in host-guest molecular recognition
chemistry. The elucidation of the novel structure, novel
interactions to guide an electron or to govern electron pathways,
and fascinating characteristics of the system in conjunction with
the illuminating experiments2-7 may open up new vistas in
science.
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Table 1. Relative ZPE-Corrected Energies (kcal/mol) and VDEs
(eV) of Anionic Water Hexamers and Dipole Moments (debyes) of
the Corresponding Neutral Species at the Optimized Anionic
Geometriesa

A D E′ Ti Pd Y411 Y51 Y42

MP2/6-311++G**
∆E0 5.11 6.61 4.83 7.37 2.71 1.60 1.44 0.00
VDE -0.24 -0.53 -0.39 0.45 0.06 0.28 0.16 0.46
µneut 0.00 4.67 4.59 0.00 10.72 8.20 7.72 9.35

MP2/611++G(2df,2p)+ diffuse(spd/p)//MP2/6-311++G**
∆E0 1.32 0.74 0.00

a The ZPE correction was done with the DFT/6-311++G** frequen-
cies.

Figure 2. Electron density distributions of HOMO for the initial
electron-containing structure Y42 (top) and LUMO for a structure of
an intermediate electron-released neutral-state Y42o* (middle), and the
structure of the final neutral-state Go, upon detaching the excess electron
from Y42 in an instant (bottom). The Y42o* is one of the conformers
obtained during the energy minimization process after detaching an
electron from Y42. The HOMO of Y42 and LUMO of Y42o* are very
similar to the LUMO of the electron-released neutral state at the Y42
geometry and the HOMO of the electron-containing anionic state at
the Y42o* geometry, respectively.
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